One More Metrization Theorem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metrization of the One-point Compactification

A new, more widely applicable, constructive definition of locally compact metric space is given, and a metric one-point compactification is constructed. Classically, this provides a simpler, more direct, construction of a metric on the one-point compactification of a separable locally compact metric

متن کامل

Metrization Theorem for Uniform Loops with the Invertibility Property

Dagmar Markechová 1,*, Peter Vrábel 1 and Beáta Stehlíková 2 1 Department of Mathematics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, A. Hlinku 1, SK-949 74 Nitra, Slovakia; [email protected] 2 Department of Informatics and Mathematics, Faculty of Economy and Business, Pan European University, SK-851 05 Bratislava, Slovakia; [email protected] * Correspondence:...

متن کامل

Towards a Natural Proof of Metrization Theorem for Space-Times

In the early 1920s, Pavel Urysohn proved his famous lemma (sometimes referred to as “first non-trivial result of point set topology”). Among other applications, this lemma was instrumental in proving that under reasonable conditions, every topological space can be metrized. A few years before that, in 1919, a complex mathematical theory was experimentally proven to be extremely useful in the de...

متن کامل

And Still One More Proof of the Radon-Nikodym Theorem

1. J. Burbea, Sharp inequalities for holomorphic functions, Illinois J. Math. 31 (1987) 248–264. 2. T. Carleman, Zur Theorie der Minimalflächen, Math. Z. 9 (1921) 154–160. 3. P. L. Duren, Theory of H p Spaces, Academic Press, New York, 1970; reprinted by Dover, Mineola, NY, 2000. 4. T. W. Gamelin and D. Khavinson, The isoperimetric inequality and rational approximation, this MONTHLY 96 (1989) 1...

متن کامل

Nagata-Smirnov Metrization Theorem.nb

Introduction: The Nagata-Smirnov Metrization theorem gives a full characterization of metrizable topological spaces. In other words, the theorem describes the necessary and sufficient conditions for a topology on a space to be defined using some metric. As a motivational example, consider the discrete topology on some space (every subset of the space is open). Though it might not be apparent to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1976

ISSN: 0002-9939

DOI: 10.2307/2041220